MANAGEMENT OF BYPRODUCT SOLIDS GENERATED IN THE PULP AND PAPER INDUSTRY

Bill Thacker NCASI

Presentation to EPA OSW Staff Washington, DC January 23, 2007

Presentation Coverage

- Brief introduction to the U.S. pulp and paper industry
- Review of the generation, characteristics, and management of byproduct solids
- Presentation of two brief case studies
- Discussion limited to
 - Wastewater treatment plant (WWTP) residuals ("sludge")
 - Boiler ash

U.S. Pulp and Paper Industry

Pulp & paper mills

- National annual production: 100 million tons of paper, paperboard, and market pulp
- Top 10 states (yr 2000):
 GA AL LA WA WI MI SC ME OR VA
- Variety of manufacturing processes, mill capacities, and end products

Byproduct Generation

- Annual generation of solid wastes or byproduct solids:
 15 million dry tons
- Including
 - Wastewater treatment plant (WWTP) residuals
 - Boiler ash (also flue gas desulfurization material)
 - Causticizing residues
 - Wood yard debris
 - Pulping and papermaking rejects

WWTP Residuals

- 5.5 million dry tons annually
- Types
 - Primary (including deinking residuals)
 - Secondary (waste activated sludge)
 - Combined primary and secondary
 - Dredged
- Mechanical dewatering is the norm, with solids content typically 30-40%, range 20-60%

• Small number of mills dry residuals (70-95% solids)

Characteristics of WWTP Residuals

- Primary WWTP residuals consist mainly of
 - Wood fiber
 - Inorganic or mineral matter (e.g., clay, CaCO₃, TiO₂)
- "Ash" (inorganic) content of primary WWTP residuals ranges from <10% to >70% (dry wt. basis)

• Secondary WWTP residuals consist mostly of bacterial biomass (non-pathogenic)

Management of WWTP Residuals

Management of WWTP Residuals

- Land application
 - Utility: soil conditioner, fertilizer, liming agent, mulch
 - Potential issue: high C:N ratio (quite high for primary residuals)

- Burning (usually onsite)
 - Utility: energy, volume reduction
 - Potential issues: high moisture high "ash"

Other Uses for WWTP Residuals

- Papermaking fiber/filler
- Industrial absorbent
- Animal bedding/litter
- Manufactured soil component
- Compost feedstock
- Landfill barrier cover
- AMD* control cover
- Building board/fixture
- Brick or concrete additive
- Glass or lightweight aggregate
- Cement kiln feedstock
- Fuel pellet ingredient
- * Acid mine drainage

WWTP Residuals Case Study

- Startup company in the Northwest began manufacturing residuals-based products for consumer, agricultural, and industrial markets in 1986
- Technical and marketing challenges resulted in 12 years of effort before first profit realized
- Major products currently are
 - Small-animal bedding
 - Cat litter
 - Oil-spill & general industrial absorbents

WWTP Residuals Case Study

- Products available in 16 countries
- Bedding & litter available in major U.S. pet store and department store chains
- Recently built a 2nd manufacturing plant in the Southeast to better serve Eastern U.S. and began product shipments in December 2004

Boiler Ash

- 4 million dry tons annually
- Types (based on fuel)
 - Wood
 - Coal
 - Wood and coal
 - Wood, coal, or both with miscellaneous solid fuels
- Wood ash
 - High in unburned carbon (char)
 - High in Ca, source of K and P
 - Alkaline
 - Cementitious

Management of Boiler Ash

2002 data (AF&PA)

Management of Boiler Ash

- Land application
 - Utility: liming agent, fertilizer
 - Potential issue: unburned carbon (wood ash)

Other Uses for Boiler Ash

- Compost feedstock
- Manufactured soil component
- Cement kiln feedstock
- Concrete additive
- Flowable fill (CLSM)*
- Waste stabilization
- Soil stabilization
- Earthen construction
- Asphalt aggregate
- Landfill daily cover
- * CLSM = controlled low-strength material

Boiler Ash Case Study

- Southeastern mill had its coal fly ash used as concrete ingredient for highway & other applications
- State DEP approved injecting wood ash into coal boiler (to obtain more energy and lower ash loss-on-ignition)
- State DOT approved use of coal-wood fly ash in concrete after short-term and long-term (>3 yrs) testing
- With coal-wood fly ash added, concrete is
 - Stronger and more durable
 - More resistant to water erosion (saltwater use)
 - Less expensive
- Coal-wood bottom ash employed as aggregate in asphalt mixes and in concrete blocks

<u>Summary</u>

- Two significant byproducts from the paper industry are WWTP residuals and boiler ash
- Land application is an important beneficial use for both types of materials
- There are numerous examples of other uses
- Paper companies continue to seek beneficial use opportunities and increasingly explore novel uses

Questions & Comments

Bill Thacker NCASI 269-276-3548 william.thacker@wmich.edu www.ncasi.org

